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ABSTRACT

KEYWORDS: Translation Validation, Undefined Behavior, Compilers, Auto-
matic Verification, Intermediate Representation (IR).

We have designed and implemented superopt-refines — an automatic sound transla-
tion validation prototype for the LLVM intermediate representation (LLVM IR). As a
translation validator, superopt-refines certifies an execution of an LLVM optimizer by
verifying refinement of the source (optimizer input) and target (optimizer output) pro-
grams. superopt-refines is made automatic through the use of an SMT solver, is de-
signed to be sound, and requires no changes to LLVM. In evaluating superopt-refines
against alive-tv [LLH+21] (a bounded automatic translation validator for LLVM), we find
that due to superopt-refines’s sound modeling of LLVM IR semantics, it is able to dis-
prove the validity of 18 transformations that are admitted as valid by alive-tv. Through
superopt-refines, we demonstrate the benefits and problems encountered in sound mod-
eling of LLVM IR semantics (particularly undefined behavior semantics).
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Chapter 1

Introduction

The LLVM project is a popular collection of compiler and toolchain technologies. One of the
subprojects of the LLVM project is the LLVM Core libraries, which provides an optimizer
that is independent of both the source and target programming languages. Optimization
independent of the source and target languages is achieved by building the LLVM Core
libraries around a well-specified code representation - the LLVM Intermediate Language
(LLVM IR). Simply put, the source language provides a front-end that compiles to LLVM
IR; programs in LLVM IR are optimized by LLVM Core libraries and then high-quality code
can be generated for a variety of target architectures from the optimized LLVM IR code.

Despite the popularity and widespread usage of the LLVM project, the LLVM IR has certain
issues concerning its specification, implementation, and usage of undefined behavior such
as inconsistencies in specified semantics, incorrect optimizations, points of disagreement
between specification and implementation, ambiguities in the specification, and fundamental
flaws in the design of the IR, as established by [LKS+17, LMNR15, LLH+21]. Resolving
these issues related to undefined behavior is important as LLVM optimizers take advantage of
undefined behavior frequently. Furthermore, undefined behavior is important for languages
to communicate invariants about programs to the optimizers in order to enable further
optimization.

One solution to address this problem would be to formalize LLVM IR semantics from their
high-level specification [Dev14], and certify individual executions of the optimizer as per
the formalized semantics — translation validation. Previous works [LMNR15, LLH+21]
have built fully automatic translation validation tools for LLVM and demonstrated the
utility of such tools by applying them to verify and discover incorrect optimizations in
LLVM. However, these tools are unsound as they have made certain under-approximating
assumptions that allow them to admit invalid optimizations as demonstrated later in Section
4.3.

We propose an automatic sound translation validation prototype for LLVM — superopt-refines.
It verifies optimizations by checking pairs of functions in LLVM IR — the source and target
of the optimization — for refinement. The source and target function satisfy a refinement
relation if and only if for every possible input state, the target function displays only a sub-
set of the behaviors of the source function [LMNR15, LLH+21]. Being a sound translation
validator, superopt-refines has been able to detect invalid optimizations that have been
admitted as valid by tools such as Alive2 [LLH+21].
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Being a prototype, superopt-refines is limited in the language features of LLVM IR that
it supports. The primary intention of superopt-refines is to demonstrate how undefined
behavior can be modeled in a sound manner, and the problems and benefits of such modeling.

© 2022, Indian Institute of Technology Delhi



Chapter 2

Background

2.1 LLVM’s Undefined Behavior

LLVM has two categories of undefined behavior (UB) [LKS+17]:

1. Immediate UB: This is the strongest form of UB and is triggered for serious er-
rors such as divide-by-zero, dereferencing an invalid pointer, etc. If immediate UB is
encountered in a program, the compiler is allowed to do anything including “to make
demons fly out of your nose”. Realistically speaking, it results in effects like exceptions,
processor traps and RAM corruption.

2. Deferred UB: This form of UB describes operations that produce unpredictable val-
ues but are otherwise safe to execute. Deferred UB is necessary to support speculative
execution such as hoisting potentially undefined operations out of loops. It comes in
two forms in LLVM:
(a) poison

(b) undef

2.1.1 Immediate UB

Why does LLVM need immediate UB?

LLVM is an intermediate representation (IR) language and as such it needs to be able
to express semantics from various languages. Immediate UB gives language designers the
freedom to choose whether to define the behavior of operations that are logically not well
defined such as divide-by-zero. For example, languages like Java and Python generate
exceptions for divide-by-zero whereas languages like C/C++ define it to be immediate UB
for performance benefits.

Furthermore, immediate UB makes more compiler optimizations1 possible in LLVM . One
such optimization is demonstrated below2.

1The terms “transformation” and “optimization” are used interchangeably.
2Transformations are sometimes demonstrated in C++ for brevity. The same principles would apply if

the code is in LLVM.
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Listing 2.1: Source

int n = ...;
for(int i=0; i<n+1; i++){

...
}

Listing 2.2: Target

int n = ...;
for(int i=0; i<=n; i++){

...
}

Note: The original program is called the source program and the optimized program is called the target

program in a transformation/optimization.

In the source program, it is possible for n+1 to have signed overflow. If we assumed signed
overflow to have wrap-around semantics (Ex. INT_MAX+1 would wrap-around to 0), then
the above transformation is illegal because the source and target program have different
behaviors — if n = INT_MAX, in the source program, the loop will never execute whereas in
the target program, the loop will never terminate.

However, if we assumed that signed overflow is immediate UB, this transformation is legal.
With these semantics, if n = INT_MAX, n+1 in the source program would trigger immediate
UB, and therefore the compiler is allowed to replace i < n+1 with i <= n. Thus, immediate
UB allows this transformation to be legal.

While immediate UB enables some transformations, it also disables some transformations
as shown below.

Listing 2.3: Source

int x = ...; int y;
bool cond = ...;
while(cond){

y = x+1;
...

}

Listing 2.4: Target

int x = ...; int y;
bool cond = ...;
y = x+1;
while(cond){

...
}

This hoisting transformation is illegal because if x = INT_MAX and cond = false, the be-
haviors of the source and target programs diverge - x+1 triggers immediate UB in the target
program but the source program doesn’t exhibit immediate UB because the loop doesn’t
execute.

© 2022, Indian Institute of Technology Delhi



2.1 LLVM’s Undefined Behavior 5

2.1.2 Poison Values

What are poison values?

A poison value is a special value that represents a violation of an assumption. An operation
on a poison value either results in a poison value or triggers immediate UB. For example,
in the following LLVM code,

%a = sub nuw i32 0, 1; // poison
%b = add i32 %a, 1; // poison
%c = and i32 %b, 1; // poison
%d = store i32 0, i32* %c; // Immediate UB

The register %a yields poison value. This is because, the nuw flag in the subtract (sub)
operation encodes the assumption that unsigned overflow should not occur in this operation.
However, subtracting 1 from 0 triggers unsigned overflow and thus the result of the sub
operation is poison. Registers %b and %c are poison as per LLVM semantics [Dev14]
because one of the operands in those instructions are poison values. Storing to an address
that is a poison value triggers immediate UB as per LLVM semantics. As a result, the
instruction assigned to register %d triggers immediate UB since it is trying to store 0 to
address %c which is poison.

LLVM’s definition of poison semantics can be found here

Why does LLVM need poison values?

poison values are a weaker and less non-deterministic form of UB than immediate UB and
they help enable some transformations that would otherwise be disabled with immediate
UB. For example, we can see that the transformation Listing 2.3 → 2.4 is illegal when
signed overflow is immediate UB. However, transformations such as these are common and
profitable and we’d like for such transformations to be legal. We can achieve this through
poison value semantics. If the transformation 2.3 → 2.4 were to be such that signed overflow
emits poison value instead of immediate UB, then the transformation becomes legal (shown
below).

© 2022, Indian Institute of Technology Delhi
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Listing 2.5: Source

int x = ...; int y;
bool cond = ...;
while(cond){

y = add nsw i32 x, 1;
...

}

Listing 2.6: Target

int x = ...; int y;
bool cond = ...;
y = add nsw i32 x, 1;
while(cond){

...
}

When x = INT_MAX and cond = false, y yields poison and this poison value isn’t used
anywhere in the target program. As a result, immediate UB is not triggered in the target
program (unlike in transformation 2.3 → 2.4).

2.1.3 Undefined Values

An undefined value in LLVM (also called undef) indicates that the user of the value may
receive an unspecified bit-pattern. undef values can be used anywhere a constant is expected.
For example, in the following LLVM code,

%a = add i8 undef, 0;
%b = mul i8 %a, 2;

The undef value here represents an unspecified bit-pattern of bitwidth 8 and so, it can yield
any value in {0,1,2...255}. Since undef can yield any value in {0,1,2...255}, %a can
also yield any value in {0,1,2...255}. Since %a is of type i8, and can yield any value
permissible within the type i8 (bitvector of bitwidth 8), we call %a and such values “fully
undef”. As for %b, since %a is multiplied by 2, %b could yield any value in {0,2...254} (the
set of even values). Unlike %a, the register %b is limited in what values it can yield and so,
we call such values “partially undef”.

Every time an undef value is observed, it can yield a different value from its set of val-
ues. For example, the following pseudo-code could print 10 different numbers from the set
{0,1,2...232 − 1}.

int a = undef;
for (int i=0; i<10; i++){

print(a);
}

LLVM’s definition of undef semantics can be found here

© 2022, Indian Institute of Technology Delhi
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Why do we need undef values?

The LLVM IR caters to multiple languages and as such, has to be able to express different
language semantics. However, the LLVM IR is incapable of expressing certain language
semantics with just immediate UB and poison. Consider the following LLVM pseudocode
example:

int x;
y = x*0;
print(y);

Some languages expect random/arbitrary values for uninitialized variables. Such languages
would expect the above code to print 0 and not print an error value or trigger immediate
UB. However, we can’t express these semantics in LLVM IR with just immediate UB or
poison - if the uninitialized variable x is made a poison, then y also yields a poison value
and trying to print a poison value would result in immediate UB. To be able to print 0
with the above code example and express such language semantics in LLVM IR, we need
undefined values which are a weaker and less non-deterministic form of UB than poison. In
the above code example, if x is made undef, y would yield 0 and the program would print
0 as expected.

2.1.4 freeze Instruction

The freeze instruction was introduced due to [LKS+17] and the efforts of its authors. As
described in [LKS+17], this instruction is used to stop the propagation of undef and poison
values by converting them to well-defined values. The instruction takes a single argument
and if that argument is poison or undef, it returns an arbitrary but fixed and well-defined
value of that argument’s type. If the argument is instead well-defined, then the instruction
is a no-op and the input argument is returned. Ex. In %a = freeze i8 undef, register %a
and all its subsequent uses might choose to yield the fixed and well-defined value 5 which is
a value of type i8. All uses of the same freeze instruction will yield the same value (unlike
undef values), while different freeze instructions may yield different values.

2.1.5 Relative Degree of Non-Determinism of UB in LLVM

The different forms of UB in LLVM have varying degrees of non-determinism and we can
impose an ordering upon them based on the relative degree of their non-determinism. The
relative degree of non-determinism in LLVM is as shown below,

© 2022, Indian Institute of Technology Delhi
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Immediate UB > poison > undef > well-defined values

Immediate UB exhibits the most non-deterministic behavior since the compiler can do any-
thing on encountering immediate UB. Well-defined values are the least non-deterministic
since the behavior of these values is clearly defined and deterministic.

2.1.6 Correctness of Transformations

A compiler transformation is correct if and only if the target (optimized) code only exhibits
behaviors that are also exhibited by the source (original) code. Transformations can be
verified by establishing a refinement relation between the source and target code.

A refinement relation between functions is satisfied when, for every possible input state,
the target function displays only a subset of the behaviors of the source function [LMNR15,
LLH+21]. Informally speaking, refinement allows a transformation to remove non-determinism
from the optimized program, but not add it. In the absence of undefined behaviors, refine-
ment degenerates to simple equivalence.

Example 1

A compiler is allowed to convert a value to a less non-deterministic value in a transformation.
For example, a poison value could be converted an undef value because undef is less non-
deterministic than poison. Similarly, a poison or undef value could be converted to a
well-defined value. However, a value cannot be converted to a value that is more non-
deterministic. For example, an undef value or well-defined value cannot be converted to a
poison value. The following are some legal (→) and illegal (̸→) transformations,

a = poison → a = undef

b = poison → b = 1

c = undef → c = 1

d =
x

0
→ d = 1

e = undef → e = undef × 2

f = undef ̸→ f = poison

g = 1 ̸→ g = undef

© 2022, Indian Institute of Technology Delhi
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Example 2

Listing 2.7: Source

define i8 @fn(i8 %x){
%a = mul i8 %x, 2;
ret i8 %a;

}

Listing 2.8: Target

define i8 @fn(i8 %x){
%a = add i8 %x, %x;
ret i8 %a;

}

The above transformation is a simple optimization that utilizes the knowledge that x+x == 2*x.
However, this transformation is invalid. This is because the transformation introduces more
non-determinism into the program — if x = undef, then %a in the source program can only
yield a value from the set {0,2...254} (the set of even values) but %a in the target pro-
gram can yield any value from the set {0,1,2...255} (all values of i8). Since the return
value of the target program can exhibit values that the return value of the source program
cannot, the target program exhibits behaviors not exhibited by the source program. Thus,
the source and target programs do not satisfy a refinement relation and this transformation
is invalid.

© 2022, Indian Institute of Technology Delhi



Chapter 3

superopt-refines

In this chapter, we describe our proposed automatic sound translation validation prototype,
superopt-refines, for verification of source-to-source transformations in LLVM IR.

Currently, superopt-refines can only verify transformations on functions that do not con-
tain branches, loops, heap-manipulating instructions, and freeze instructions and supports
only integer types.

3.1 Overview

When given a source and target function in LLVM IR, superopt-refines verifies the cor-
rectness of the transformation from source function to target function, and declares whether
the transformation is valid or not.

To verify the correctness of a transformation from source to target function, superopt-refines
first constructs individual transfer functions for the two functions, each instrumented with
predicates encoding information related to LLVM’s undefined behavior semantics. Following
this, superopt-refines uses the transfer functions to construct a formula in SMT that can,
if proven, verify that the transformation is valid. This SMT formula is then passed to an
SMT solver which attempts to prove it. Based on whether the SMT solver could prove the
SMT formula, superopt-refines declares whether the transformation is valid or not.

This process is described in more detail, in Sections 3.2 – 3.4

3.2 Transfer Function

Given source and target functions in LLVM IR, superopt-refines constructs individual
transfer functions for the two functions, each instrumented with predicates. This section
discusses the predicates instrumented in the transfer function for a function in LLVM IR by
superopt-refines.

3.2.1 Assumes Predicates

An assumes predicate specifies the conditions under which an instruction is well-defined
i.e. it doesn’t trigger immediate UB [DB17b]. These predicates are instrumented in the
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transfer function for each instruction that could cause immediate UB.

The assumes predicates that superopt-refines encodes for various instructions have been
adopted from the definedness constrains of the Alive tool [LMNR15].

Example 1:

LLVM Program:

C0: define i8 @fn(i8 %x){
C1: %a = udiv i8 1, %x;
C2: %b = sub i8 %a, 1;
C3: %c = udiv i8 1, %b;
C4: ret i8 %c;
C5: }

Corresponding Transfer Function:

a := udiv(1, x)
b := sub(a, 1)
c := udiv(1, b)
ret_val := c

Corresponding Assumes Predicates:

{x ̸= 0, b ̸= 0}

Division by zero triggers immediate undefined behavior in LLVM and hence for the program
in Example 1, we have the assumes predicates {x ̸= 0, b ̸= 0} which encode the conditions
under which the program is well-defined.

3.2.2 Poison Condition Predicates

A poison condition predicate specifies the conditions under which an instruction yields
poison value. These predicates are instrumented in the transfer function for each instruction
that could yield poison.

The poison condition predicates that superopt-refines encodes for various instructions
have been adopted from the constraints for poison-free execution of the Alive tool [LMNR15].

Example 2:

LLVM Program:

C0: define i8 @fn(i8 %x, i8 %y){

© 2022, Indian Institute of Technology Delhi



3.3 Encoding undef semantics in SMT 12

C1: %a = add i8 nuw %x, %y;
C2: %b = udiv i8 1, %a;
C3: ret i8 %b;
C4: }

Corresponding Transfer Function:

a := add(x, y)
a.pc := x.pc ∨ y.pc ∨ (zext(x,1) + zext(y,1) ̸= zext(x + y, 1))
b := udiv(1, a)
b.pc := a.pc
ret_val := b

Corresponding Assumes Predicates:

{a ̸= 0}

a.pc represents the poison condition predicate for the register %a and likewise for other
registers in the program. The poison condition predicates have been instrumented in the
transfer function alongside the encoding of the actual instructions in the program.

Register %a can yield poison value if either register %x or %y is a poison value which is why
%a’s poison condition predicate has the term x.pc ∨ y.pc (x.pc and y.pc are encoded as
uninterpreted constants in the final SMT formula). Register %a can also yield poison value
if registers %x and %y cause unsigned overflow on addition and hence, %a’s poison condition
predicate also contains the term (zext(x,1) + zext(y,1) ̸= zext(x + y, 1)).

3.3 Encoding undef semantics in SMT

Due to the existence of fully and partially undefined values in LLVM IR, a register needs to
be modeled as a set of values that it can potentially yield instead of as a single value. This
section discusses superopt-refines’s scheme for encoding LLVM IR’s undef semantics in
SMT.

The set of values that a register can yield as a fully or partially undef value is modeled in
superopt-refines by encoding the corresponding set membership function in SMT using
an uninterpreted function or lambda function of type (register type → boolean). For
example, we could represent a register i8 x that is partially undef and can only be an even
value as x.set: i8 → bool where,

x.set := λ (c: i8). c mod 2 == 0

© 2022, Indian Institute of Technology Delhi



3.4 Verification Condition in SMT 13

3.3.1 Function Arguments

A function argument can be a fully undef value or any partially undef value i.e. it can yield
any set of values and the encoding needs to appropriately reflect this. For this reason, for
a function argument of type T, we create an uninterpreted function of type (T → bool)
to represent the set membership function for this argument’s set of values, and we do not
impose any constraints on this function. Since the uninterpreted function can represent any
set of values permissible in type T, it can represent any partially or fully undef value for the
function argument.

3.3.2 Instructions

We encode the set membership functions for values of instructions such as add, sub, etc., as
lambda functions. For example take the following arbitrary non-heap-manipulating binary
operation of type T (can be in LLVM IR or transfer function),

op T %a, %b
(or)

op(a, b)

Assume that the set membership functions for %a and %b are already defined as a.set and
b.set respectively. We encode the set membership function for the result of this operation
as a lambda function of type (T → bool), as follows,

λ (m: T). ∃ x, y. a.set(x) ∧ b.set(y) ∧ (op(x, y) == m)

3.3.3 Constants and Well-defined Values

For the sake of uniformity, we consider constants and well-defined values as singleton sets
and accordingly encode set membership functions for them. For example, for a constant
value v of type T, we encode the set membership function as λ (m: T). m == v.

3.4 Verification Condition in SMT

This section discusses the SMT formula to be verified and how superopt-refines constructs
it, given the instrumented transfer functions of the source and target functions.

Before we introduce the verification condition, we first introduce some required operators.
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3.4 Verification Condition in SMT 14

3.4.1 Operator ⊒

Let the operator ⊒u be defined as follows:

∀x. b.set(x) =⇒ a.set(x)

a ⊒u b

a.set represents the set membership function for the set of values that register a can yield,
and the same applies for b.set and register b.

In the context of superopt-refines, we define the operator ⊒ (refinement operator) to be
as follows:

(b.pc =⇒ a.pc) ∧ (a.pc ∨ a ⊒u b)

a ⊒ b

The operands of the ⊒ and ⊒u operators are registers in the source and target functions.
a.pc represents the poison condition predicate for the instruction corresponding to register
a, and similarly for b.pc and register b.

In the context of superopt-refines, a register b refines register a, or a ⊒ b if and only if
(1) register b yields poison only if register a also yields poison, (2) If register a does not yield
poison, the set of values register b can yield must be a subset of the values that register a

can yield. Invariants involving the ⊒ operator are informally called refinement invariants.

3.4.2 Verification Condition

Of the input source function and input target function, let the function arguments for the
source function be src.arg1, src.arg2, . . . src.argn and for the target function be tgt.arg1,
tgt.arg2, . . . tgt.argn. Let the return value for the source function be src.ret_val and for
the target function be tgt.ret_val. Let the set of assumes predicates for the source function
be src.assumes_preds and for the target function be tgt.assumes_preds. Let the transfer
functions for the source and target function be tfsrc and tftgt respectively. Let the weakest
precondition function be denoted by wp.

Let src.assumes_conjunct and tgt.assumes_conjunct be defined as follows,

src.assumes_conjuct =
∧

pred∈src.assumes_preds

wp(tfsrc, pred)

tgt.assumes_conjuct =
∧

pred∈tgt.assumes_preds

wp(tftgt, pred)
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Assuming that the source and target functions do not contain any branches, loops, heap-
manipulating instructions, or freeze instructions, and contains only integer types, the veri-
fication condition for proving that the target function refines the source function consists of
the following two predicates,

1. (src.assumes_conjunct =⇒ tgt.assumes_conjunct)

2. (src.assumes_conjunct ∧ tgt.assumes_conjunct ∧ (
∧n

i=1 src.argi ⊒ tgt.argi)) =⇒
wp(tfsrc, src.ret_val) ⊒ wp(tftgt, tgt.ret_val)

If these two predicates are proven, then the transformation from the input source function
to the input target function in LLVM IR is valid.

3.5 Example Transformations

3.5.1 Transformation 1

Source Function:

define i8 @fn(i8 %x){
%a = add i8 %x, %x;
ret i8 %a;

}

Source Transfer Function:

a := add(x, x)
a.pc := x.pc
ret_val := a

Source Assumes Predicates: {}

Target Function:

define i8 @fn(i8 %x){
%a = mul i8 %x, 2;
ret i8 %a;

}

Target Transfer Function:

a := mul(x, 2)
a.pc := x.pc
ret_val := a

Target Assumes Predicates: {}

Verification Condition:
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1. (src.assumes_conjunct =⇒ tgt.assumes_conjunct)

⇔ True =⇒ True

⇔ True

2. (src.x ⊒ tgt.x) =⇒ (wp(tfsrc, src.ret_val) ⊒ wp(tftgt, tgt.ret_val))

⇔ (src.x ⊒ tgt.x) =⇒ (add(src.x, src.x) ⊒ mul(tgt.x, 2))

⇔ ((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ src.x ⊒u tgt.x)) =⇒

((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ add(src.x, src.x) ⊒u mul(tgt.x, 2)))

...

⇔ True

Thus, the target function refines the source function and this transformation is valid.

For the term add(src.x, src.x) ⊒u mul(tgt.x, 2)), superopt-refines would define the fol-
lowing set membership functions,

src.a.set 7→ λm. ∃ p, q. src.x.set(p) ∧ src.x.set(q) ∧ (p+ q == m)

const2.set 7→ λm. m == 2

tgt.a.set 7→ λm. ∃ p, q. tgt.x.set(p) ∧ const2.set(q) ∧ (p× q == m)

Using these set membership functions, superopt-refines would expand the term add(src.x, src.x) ⊒u

mul(tgt.x, 2)) in the verification condition in the following manner,

add(src.x, src.x) ⊒u mul(tgt.x, 2))

⇔ ∀x. tgt.a.set(x) =⇒ src.a.set(x)

3.5.2 Transformation 2

Source Function:

define i8 @fn(i8 %x){
%a = udiv i8 %x, 0;
ret i8 %a;

}
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Source Transfer Function:

a := udiv(x, 0)
a.pc := x.pc
ret_val := a

Source Assumes Predicates: {0 ̸= 0}

Target Function:

define i8 @fn(i8 %x){
ret i8 1;

}

Target Transfer Function:

ret_val := 1

Target Assumes Predicates: {}

Verification Condition:

1. (src.assumes_conjunct =⇒ tgt.assumes_conjunct)

⇔ (0 ̸= 0) =⇒ True

⇔ False =⇒ True

⇔ True

2. (src.assumes_conjunct ∧ tgt.assumes_conjunct ∧ . . .) =⇒ . . .

⇔ (0 ̸= 0) ∧ True ∧ . . . =⇒ . . .

⇔ False =⇒ . . .

⇔ True

Thus, the target function refines the source function and this transformation is valid.

3.5.3 Transformation 3

Source Function:

define i8 @fn(i8 %x){
%a = add i8 %x, %x;
ret i8 %a;

}

Source Transfer Function:
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a := add(x, x)
a.pc := x.pc
ret_val := a

Source Assumes Predicates: {}

Target Function:

define i8 @fn(i8 %x){
%a = add nuw i8 %x, %x;
ret i8 %a;

}

Target Transfer Function:

a := add(x, x)
a.pc := x.pc ∨ (zext(x,1) + zext(x,1) ̸= zext(x + x, 1))
ret_val := a

Target Assumes Predicates: {}

Verification Condition:

1. (src.assumes_conjunct =⇒ tgt.assumes_conjunct)

⇔ True =⇒ True

⇔ True

2. (src.x ⊒ tgt.x) =⇒ (wp(tfsrc, src.ret_val) ⊒ wp(tftgt, tgt.ret_val))

⇔ (src.x ⊒ tgt.x) =⇒ (add(src.x, src.x) ⊒ add(tgt.x, tgt.x))

⇔ ((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ src.x ⊒u tgt.x)) =⇒

((tgt.a.pc =⇒ src.a.pc) ∧ (src.a.pc ∨ add(src.x, src.x) ⊒u add(tgt.x, tgt.x)))

⇔ ((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ src.x ⊒u tgt.x)) =⇒

(((tgt.x.pc ∨ (zext(tgt.x, 1) + zext(tgt.x, 1) ̸= zext(tgt.x+ tgt.x, 1))) =⇒ src.x.pc) ∧ . . .)

...

⇔ False

The terms colored in red are not provable with (src.x ⊒ tgt.x). Hence the target function
does not refine the source function and this transformation is invalid. A counterexample
for this transformation is {src.x.set 7→ λm. m == 255, tgt.x.set 7→ λm. m == 255,
src.x.pc 7→ False, tgt.x.pc 7→ False} which would make the target function return poison
value but not the source function.
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3.5.4 Transformation 4

Source Function:

define i8 @fn(i8 %x){
%a = add i8 %x, %x;
ret i8 %a;

}

Source Transfer Function:

a := add(x, x)
a.pc := x.pc
ret_val := a

Source Assumes Predicates: {}

Target Function:

define i8 @fn(i8 %x){
%a = mul i8 %x, 3;
%b = sub i8 %a, %x;
ret i8 %b;

}

Target Transfer Function:

a := mul(x, 3)
a.pc := x.pc
b := sub(a, x)
b.pc := a.pc ∨ x.pc
ret_val := b

Target Assumes Predicates: {}

Verification Condition:

1. (src.assumes_conjunct =⇒ tgt.assumes_conjunct)

⇔ True =⇒ True

⇔ True

2. (src.x ⊒ tgt.x) =⇒ (wp(tfsrc, src.ret_val) ⊒ wp(tftgt, tgt.ret_val))

⇔ (src.x ⊒ tgt.x) =⇒ (add(src.x, src.x) ⊒ sub(mul(tgt.x, 3), tgt.x))

⇔ ((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ src.x ⊒u tgt.x)) =⇒

((tgt.b.pc =⇒ src.a.pc) ∧ (src.a.pc ∨ add(src.x, src.x) ⊒u sub(mul(tgt.x, 3), tgt.x)))

⇔ ((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ src.x ⊒u tgt.x)) =⇒
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((tgt.x.pc =⇒ src.x.pc) ∧ (src.x.pc ∨ add(src.x, src.x) ⊒u sub(mul(tgt.x, 3), tgt.x)))

...

⇔ False

The terms colored in red are not provable with (src.x ⊒ tgt.x). Hence, the target function
does not refine the source function and this transformation is invalid. A counterexample
for this transformation is {src.x.set 7→ λm. (m == 0 ∨m == 2), tgt.x.set 7→ λm. (m ==

0 ∨ m == 2), src.x.pc 7→ False, tgt.x.pc 7→ False} which allows the target function to
return the value 6 but not the source function.

3.6 Optimizations

3.6.1 Bounded Cardinality

In the scheme for encoding undef semantics in SMT described in Section 3.3, function argu-
ments’ set membership functions are encoded as uninterpreted functions with no constraints.
This amounts to modeling these function arguments as having sets of values of cardinality
up to the number of values permissible within their type. Such an encoding scheme that
models both partial and full undef values is necessary in order to soundly guarantee that a
transformation is valid. However, for transformations that are invalid, in the common case,
we do not need to model sets of arbitrary cardinality. The insight is that in most cases, we
can find a counterexample by modeling sets of bounded cardinality i.e. sets with at most 2
values, 3 values, etc. up to a fixed number of values.

Sets of bounded cardinality are realized by making the SMT solver find models for uninter-
preted constants rather than uninterpreted functions. Set membership functions for function
arguments with maximum cardinality k are encoded as follows:

λx.(x == m1) ∨ (x == m2) ∨ . . . (x == mk)

Here, m1,m2 . . .mk are the uninterpreted constants for which the SMT solver needs to find
models as opposed to finding a model for an uninterpreted function.

This optimization is implemented in superopt-refines as an optional feature which the
user can enable by passing as input, the bounded cardinality to be used for the sets of values
of function arguments.
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Chapter 4

Evaluation

4.1 Implementation

superopt-refines is implemented in C++. For evaluation, various pairs of programs in
LLVM IR consisting of a single function per program containing no branches, loops, heap-
manipulating instructions, or freeze instructions, and only integer types are examined. Sym-
bolic executors have been implemented for LLVM IR, to convert the input programs to their
corresponding transfer functions. The verification conditions for proving refinement of the
input program pair are encoded as SMT expressions involving bitvectors, lambdas and un-
interpreted functions. superopt-refines uses the Z3 SMT Solver [MB08] to solve the SMT
proof obligations generated and these proof obligations are either over the AUFBV or UFBV
theory. superopt-refines sets the time out parameter for the Z3 SMT Solver to be 60
seconds - if Z3 is unable to declare sat or unsat for an SMT expression in 60 seconds, it
times out and the proof fails.

Threats to Validity. While superopt-refines tries to accurately reflect the semantics
described in the LLVM Language Reference [Dev14], there could be unintended differences
between the semantics formalized in superopt-refines and the semantics intended by the
language developers.

4.2 Experimental Setup and Benchmark Selection

We evaluate and compare the results and execution times of superopt-refines and the
online alive-tv tool (a bounded automatic translation validator for LLVM) [LLH+21] on:
(1) transformations collected from [LMNR15], (2) transformations involving arithmetic op-
erations over one to two variables. For each of the selected transformations, we attempt
to prove that the target function refines the source function using superopt-refines and
alive-tv.

4.3 Results

In tables 4.1 and 4.2, for brevity, the source and target functions are represented as the
expressions that are returned by the respective functions. In the actual source and target

https://alive2.llvm.org/ce/
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functions, the variables a and b are represented as bitvectors of width 32 (i32) in most
cases, and in some cases, bitvectors of width 8 (i8). In tables 4.1 and 4.2, (1) SR Result
and AT Result represent whether superopt-refines and alive-tv respectively declare the
corresponding transformation to be valid or not, (2) SR Time and AT Time represent the
time taken (in seconds) for superopt-refines and alive-tv to declare a result, and (3)
SR Time (Bounded) in 4.2 represents the time taken by superopt-refines (in seconds) to
declare a result with a bounded cardinality of 1 - 3 values for the function arguments — a

and b.

Table 4.1 contains the results of evaluating superopt-refines and alive-tv on transfor-
mations that are valid as per LLVM semantics [Dev14]. For two transformations in Table 4.1,
superopt-refines timed out and was unable to prove those transformations as valid. This
happened due to SMT solver time-outs when verifying the condition (tgt.ret_val.pc =⇒
src.ret_val.pc) of the verification condition. In contrast, the alive-tv tool didn’t time-out
and was able to prove these transformations as valid. As for the remaining transformations,
both superopt-refines and alive-tv were able to prove their validity. It is evident from
the table that superopt-refines requires more time than alive-tv to prove validity of
transformations. From the data given in Table 4.1, superopt-refines requires 11.84× more
time than alive-tv on average. This slowdown and the cases in which superopt-refines
timed out occur because alive-tv is a bounded translation validator and has made certain
underapproximations in modeling LLVM semantics for efficiency purposes which allow it to
declare results faster whereas superopt-refines’s modeling of LLVM semantics is intended
to be sound. Ex. alive-tv makes the underapproximating assumption that function argu-
ments are either well-defined values, poison or fully undef i.e. it doesn’t model the case
where function arguments can be partially undef [LLH+21]. alive-tv makes this underap-
proximation because a doubly exponential search space is spawned for each partially undef
value and by making this underapproximation, it reduces the aforementioned search spaces
to exponential. In contrast, superopt-refines’s goal is sound translation validation and
thus, it has to also model the possibility of function arguments being partially undef. It
does this using set membership functions as described in Section 3.3 and thus, has to search
over doubly exponential search spaces (22n for each n bit integer) for each possible partially
undef value in the input programs.

Table 4.2 contains the results of evaluating superopt-refines and alive-tv on transfor-
mations that are invalid as per LLVM semantics. For one of the transformations in this
table, superopt-refines times out but alive-tv doesn’t. This is due to the same reason
described for the time-outs in Table 4.1 — alive-tv has made some underapproximations
for efficiency reasons which superopt-refines hasn’t. As a result, superopt-refines has
to search over a larger space to prove transformations which causes it to time-out for this
transformation. From the remaining transformations in Table 4.2, the benefits of sound
modeling of LLVM semantics in superopt-refines can be seen — alive-tv incorrectly
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declares all but one of these transformations to be valid, whereas superopt-refines is able
to correctly declare them as invalid. alive-tv incorrectly determines these transformations
to be valid due to its underapproximating assumption that function arguments are either
fully undef or not. For example, for the transformation a+a → a∗3−a, one possible coun-
terexample is {a 7→ {0, 2}} which allows the target program to return the value 6 but not the
source program. superopt-refines can discover this counterexample but alive-tv cannot
because it assumes variable a to be either not undef or fully undef (assuming variable a is
of type i8, fully undef is {0, 1, 2 . . . 255}).

Furthermore, it can be seen from comparing the columns SR Time and SR Time (Bounded)
of Table 4.2, that the bounded cardinality optimization described in Section 3.6.1 helps
superopt-refines disprove transformations faster. superopt-refines is able to disprove
transformations ∼ 2× faster on average with the bounded cardinality optimization.

Table 4.1: Valid Transformations

Source Target Correct Result AT Result SR Result AT Time SR Time
(a⊕−1) + b b− 1− a Valid Valid Valid 4.54 29.20
a+nsw 1 > a True Valid Valid Timed Out 0.30 _

−(a/5) a/(−5) Valid Valid Timed Out 0.31 _
a+ a a ∗ 2 Valid Valid Valid 0.54 1.82

a+ a+ a a ∗ 2 + a Valid Valid Valid 0.56 2.86
a+ a− a a Valid Valid Valid 0.3 7.03
(a+ a) ∗ a a ∗ a ∗ 2 Valid Valid Valid 0.45 10.26
a+ a− a a ∗ 2− a Valid Valid Valid 0.34 7.23
(a+ a) ∗ 2 a ∗ 4 Valid Valid Valid 0.33 2.44
a ∗ 2 + a a ∗ 3 Valid Valid Valid 0.53 3.43
a ∗ 2− 4 (a− 2) ∗ 2 Valid Valid Valid 0.37 2.27
(a+ a) ∗ b a ∗ 2 ∗ b Valid Valid Valid 1.29 8.44
a+ a+ b a ∗ 2 + b Valid Valid Valid 0.6 9.57
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Table 4.2: Invalid Transformations

Source Target Correct AT SR AT SR SR Time
Result Result Result Time Time (Bounded)

a−nsw (−b) a+nsw b Invalid Invalid Timed Out 0.37 _ _
a+ a a+nuw a Invalid Invalid Invalid 0.30 4.09 0.43
a a+ a− a Invalid Valid Invalid 0.30 0.93 1.08
a a ∗ 2− a Invalid Valid Invalid 0.36 1.09 0.98

a+ a a ∗ 3− a Invalid Valid Invalid 0.51 4.18 1.59
a− a (a− a) ∗ a Invalid Valid Invalid 0.55 2.63 1.18
a ∗ 3 a+ a+ a Invalid Valid Invalid 0.47 2.75 1.09
a ∗ 3 a ∗ 2 + a Invalid Valid Invalid 0.45 4.25 1.83
a ∗ 3 a ∗ 4− a Invalid Valid Invalid 0.45 2.66 1.46

a+ a+ a a ∗ 4− a Invalid Valid Invalid 0.34 4.29 2.92
(a− a) ∗ a (a− a) ∗ 4 Invalid Valid Invalid 0.41 6.94 1.68
(a− a) ∗ 3 a− a Invalid Valid Invalid 0.55 2.07 1.63
(a− a) ∗ 3 (a− a)/2 Invalid Valid Invalid 0.50 3.82 2.89
(a− a)/3 (a− a)/4 Invalid Valid Invalid 0.56 7.69 5.30
a ∗ 2− a a+ a− a Invalid Valid Invalid 0.31 1.39 2.57
a ∗ 3 + a (a+ a) ∗ 2 Invalid Valid Invalid 0.50 2.91 1.93
a ∗ 4− a a ∗ 2 + a Invalid Valid Invalid 0.69 5.32 1.65
a ∗ 2 + a a ∗ 4− a Invalid Valid Invalid 0.52 7.49 2.42
a+ b− a b+ b− b Invalid Valid Invalid 0.52 1.83 1.69
a+ b− a b ∗ 2− b Invalid Valid Invalid 0.34 1.82 1.69
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Chapter 5

Limitations and Future Work

In this chapter, we discuss the shortcomings of superopt-refines, and potential methods
of addressing them.

5.1 Limited Support for LLVM IR

One of the limitations of superopt-refines is that it restricts the space of input programs
it can accept by not allowing branches, loops, heap-manipulating instructions, and freeze
instructions. In this section, we discuss how such instructions can be potentially modeled
in superopt-refines,

5.1.1 Heap-manipulating Instructions

superopt-refines can be made to support heap-manipulating instructions by using SMT
array theory to model the memory states of the source and target programs. The algorithm
would track the effects of heap-manipulating instructions on the memory states of the source
and target programs, and finally verify that the memory state of the target program refines
the memory state of the source program.

5.1.2 freeze Instruction

superopt-refines can be made to support the freeze instruction by adding to the existing
encoding scheme. The poison condition predicate for a freeze instruction would be False.
The resulting set of values of a freeze instruction would be encoded in the following way,

Instruction:

%b = freeze T %a

Corresponding Set Membership Function:

b.set := λx. (¬a.pc =⇒ a.set(b.freeze_val)) ∧ (x == b.freeze_val)

b.freeze_val is an uninterpreted constant of type corresponding to T in SMT, that rep-
resents the arbitrary, fixed value yielded by the freeze instruction. This set membership
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function reflects that the freeze instruction yields a well-defined value through the term
x == b.freeze_val which makes it a singleton set. Furthermore, the term (¬a.pc =⇒
a.set(b.freeze_val)) reflects that if register %a is not poison, the fixed value yielded by
the freeze instruction must belong to the set of values yielded by register %a.

5.1.3 Branches and Loops

superopt-refines can be made to support branches and loops through bisimilarity check-
ing. Bisimilarity checking proceeds by correlating transitions in the two input programs
and identifying invariants between the variables of the two programs at the endpoints of the
correlated transitions [PSS98]. As demonstrated in [GRB20, DB17a, DB17b], bisimilarity
checking has been successful in statically computing proofs of equivalence between pairs of
programs. The algorithm developed in [GRB20] can be extended to compute proofs of re-
finement between LLVM IR programs by extending the invariants inferred at the endpoints
of the correlated transitions to also include refinement invariants (Section 3.4.1), and veri-
fying that the return value and the memory state of the target program refine that of the
source program.

5.2 SMT Solver Time-Outs

superopt-refines can fail to prove refinement for a pair of programs due to the SMT solver
timing out. Certain instances of such failure are shown in Section 4.3 and the reasons for
their occurrence are also discussed. While SMT solver time-outs do not affect soundness,
they do affect the completeness of superopt-refines and this section discusses measures
that can be taken to reduce the frequency of such time-outs.

5.2.1 Function Inlining and Simplification

superopt-refines relies on set membership functions to represent undef values and these
functions are often invoked in the SMT proof obligation to indicate that a variable is a
member of a set. However, relying on set membership functions needlessly obfuscates the
SMT proof obligation and can hinder the SMT solver in using its strategies. It has been
observed that superopt-refines can sometimes even time out on trivial queries such as
False =⇒ . . . . This suggests that simplifying the final SMT proof obligation by inlining
all function invocations and removing all set membership functions from the proof obligation
might help.

It turns out that inlining set membership functions isn’t enough since resulting SMT proof
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obligations still timed out for some benchmarks. From observing the generated SMT proof
obligations of these sample benchmarks, it was hypothesized that the time-outs could be
occurring due to the presence of too many existential quantifiers. superopt-refines’s
encoding scheme for set membership functions, as discussed in Section 3.3, relies heavily
on existential quantifiers. It was discovered from observing the SMT proof obligations
of the sample benchmarks, that existential quantifiers can sometimes be redundant, and
eliminated in such cases. Elimination of such redundant existential quantifiers combined
with function inlining enabled the sample benchmarks to be proven by the SMT solver
which were earlier causing it to time out. We speculate that function inlining combined
with quantifier elimination and other such simplification heuristics can not only allow more
proof obligations to become decidable by the SMT solver, but also allow the SMT solver
to decide proof obligations faster. Below, a sanitized snippet of a proof obligation is shown
(in pseudocode), that was initially causing the SMT solver to time out but after function
inlining and simplification, allowed the SMT solver to prove it successfully.

Snippet of Original Proof Obligation:

let f1 = λm. m == src.x.pc in
let f2 = λm. m == dst.x.pc in
∃ x1, x2. f1(x1) ∧ f2(x2) ∧ (x2 =⇒ x1)

After Function Inlining:

∃ x1, x2. (x1 == src.x.pc) ∧ (x2 == dst.x.pc) ∧ (x2 =⇒ x1)

After Function Inlining and Simplification:

∃ x1, x2. (dst.x.pc =⇒ src.x.pc)

After Function Inlining, Simplification, and Redundant Quantifier Elimination:

dst.x.pc =⇒ src.x.pc

5.2.2 Query Decomposition

Previous work [GSMB18] has shown that the technique of query decomposition can help de-
cide proof obligations that the SMT solver otherwise can’t decide, and can also yield gains in
the time taken to decide proof obligations. Query decomposition decomposes larger expres-
sions into smaller sub-expressions, and substitutes those sub-expressions that are equivalent.
Similar techniques can also be used for inferring invariants for refinement as described hence-
forth.

Theorem 1. Let a, b, c, d be program variables/registers. Then we have the following
property,
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a ⊒u c b ⊒u d

a op b ⊒u c op d

Proof. Take an arbitrary value v that belongs to the set of values of c op d. Then, there
exist c1 and d1 belonging to the set of values of c and d respectively such that v = c1 op d1.
Since a ⊒u c and b ⊒u d, there exist a1 and b1 belonging to the set of values of a and b

respectively such that a1 = c1 and b1 = d1. Since c1 op d1 = a1 op b1 = v, any value v that
belongs to the set of values of c op d also belongs to the set of values of a op b. QED.

This result can be generalized for arbitrary expressions using structural induction.

Usage. We can use this theorem to infer new invariants without the use of an SMT solver.
For example, using the invariants a ⊒u a′, b ⊒u b′, c ⊒u c′, d ⊒u d′, we can infer the invariant
a+ b ∗ c/d ⊒u a′ + b′ ∗ c′/d′ without using an SMT solver.

It is also possible to use this theorem to make invariants simpler to prove for SMT solvers by
replacing isomorphic sub-expressions with a single variable in source and target expressions
and adding an invariant in the precondition for refinement of the newly added variables.
For example, the query

a ⊒u a′, b ⊒u b′, c ⊒u c′, d ⊒u d′ =⇒ a+ b ∗ c/d ⊒u a′ − b′ ∗ c′/d′

can be converted to the following simpler query,

a ⊒u a′, t ⊒u t′ =⇒ a+ t ⊒u a′ − t′

As per Theorem 1, the results of both SMT queries would be equivalent.
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Chapter 6

Discussion and Conclusion

Translation validation attempts to certify optimizers and compilers by certifying individual
executions. Translation validation is undecidable in general and yet, is a relevant problem
in many fields such as program synthesis, superoptimization, etc.

To explore certifying the LLVM optimizer using translation validation methods, we have cre-
ated and described an automatic sound translation validation prototype — superopt-refines.
Through superopt-refines, we explore the problems and benefits of sound modeling of
LLVM IR semantics. We’ve evaluated superopt-refines against alive-tv (a bounded au-
tomatic translation validator for LLVM) and shown 12 transformations where superopt-refines
and alive-tv yield the correct result, 18 transformations where superopt-refines yields
the correct result and alive-tv yields the incorrect result, and 3 transformations where
alive-tv yields the correct result and superopt-refines times out. In this evaluation,
superopt-refines’s detection of incorrect transformations which alive-tv fails to detect
demonstrates the benefits of sound modeling of LLVM IR semantics. However, this evalua-
tion also demonstrates the shortcomings of superopt-refines through the transformations
where it has timed out. Future work in superopt-refines would attempt to extend sup-
port for more LLVM IR language features, and reduce frequency of time-outs by optimizing
the SMT encoding and required proof obligations.
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